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Figure 1: FlowCapX enables high-fidelity flow reconstruction from sparse video inputs, supporting downstream tasks including (1) Velocity-
based flow analysis, (2) Robust scene augmentation with tracer visualization, and (3) Accurate re-simulation via reconstructed velocity.

Abstract

We present FlowCapX, a physics-enhanced framework for flow reconstruction from sparse video inputs, addressing the chal-
lenge of jointly optimizing complex physical constraints and sparse observational data over long time horizons. Existing meth-
ods often struggle to capture turbulent motion while maintaining physical consistency, limiting reconstruction quality and
downstream tasks. Focusing on velocity inference, our approach introduces a hybrid framework that strategically separates
representation and supervision across spatial scales. At the coarse level, we resolve sparse-view ambiguities via a novel op-
timization strategy that aligns long-term observation with physics-grounded velocity fields. By emphasizing vorticity-based
physical constraints, our method enhances physical fidelity and improves optimization stability. At the fine level, we priori-
tize observational fidelity to preserve critical turbulent structures. Extensive experiments demonstrate state-of-the-art velocity
reconstruction, enabling velocity-aware downstream tasks, e.g., accurate flow analysis, scene augmentation with tracer visual-
ization and re-simulation. Our implementation is released at ht tps://github.com/taoningxiao/FlowCapX.git.

CCS Concepts
* Computing methodologies — Physical simulation; Neural networks;

1 Introduction

Accurate reconstruction of turbulent flows from sparse-view RGB
videos remains a pivotal challenge, with critical implications for
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applications ranging from aerodynamic analysis [RCDB23] to vi-
sual effects [GITH14]. While recent advances in neural reconstruc-
tion have significantly improved density and appearance recov-
ery [WTC24; YZG*24; CLZ*22], progress in physically consistent
velocity estimation remains insufficient, hindering reliable analysis
and applications.

One major challenge for velocity reconstruction is the inherent
ambiguity in reconstructing turbulent motion from sparse obser-
vations. Prior work in experimental settings with known lighting
conditions [EUT19; FST21] has shown that long temporal physical
consistency is critical to resolve this ambiguity, as it establishes ad-
ditional temporal correspondences across frames. However, jointly
optimizing neural velocity representations across frames to enforce
long-term consistency is challenging and often fails to achieve
low-error solutions. Neural trajectory representations [WTC24],
by contrast, inherently encode temporal correspondence through
their formulation. However, their over-constrained representation
space tends to filter out essential turbulent phenomena, such as
vortex shedding or small-scale eddies. Another challenge stems
from the trade-off between enforcing physical laws and maintain-
ing observational fidelity. Strictly enforcing physical laws often
leads to the over-smoothing of turbulent details [CLZ*22], while
observation-driven methods struggle to maintain physical plausi-
bility [DWD#*24]. Optimizing both physical laws and observational
data is a known difficulty in methods such as Physics Informed
Neural Networks [CDG*22; LCT25]. This compromise leads to
sub-optimal velocity estimation that lacks the fidelity required for
precise analysis and the robustness necessary for reliable down-
stream tasks, such as tracer visualization or re-simulation.

To address these challenges, we propose a hybrid framework
that strategically splits representation and supervision across spa-
tial scales. At the fine scale, where turbulence is highly complex,
we prioritize observational fidelity over strict physical constraints
to preserve the critical turbulent characteristics. On the coarse
scale, we enforce long temporal physical consistency through
an innovative flow transport supervision, which resolves tempo-
ral ambiguities by combining multi-frame observation cues and
efficiently penalizing accumulated drift rather than only frame-
by-frame error. We further complemented it with vorticity-based
physical constraints, ensuring better optimization convergence and
vorticity preservation. This separation allows the coarse scale to
be optimized for physical correctness and convergence stabil-
ity—unaffected by small-scale turbulence—while the fine scale fo-
cuses on capturing high-frequency observational detail only within
the physically valid regions defined by the coarse velocity. As a
result, by merging the coarse and fine scales, our method yields a
velocity field that is accurate, robust, and faithfully turbulent. We
further demonstrate the effectiveness of our approach through ex-
tensive evaluations, focusing on both reconstruction accuracy and
downstream tasks including tracer visualization and re-simulation.
Our key contributions are summarized as follows:

e Hybrid framework: A spatially split strategy that combines
fine-scale observational fidelity with coarse-scale physical con-
sistency.

o Physical fidelity: Robust velocity estimation with enhanced

long-term consistency and convergence stability via flow trans-
port and vorticity constraints.

o Downstream task supports: Improved velocity reconstructions
for accurate analysis, tracer visualization and re-simulation, ben-
efiting various physics-based applications.

2 Related Work

In fluid reconstruction, recent advancements have shifted
from active sensing with specialized hardware—such as struc-
tured light systems [GNG*13; JYY13] and particle imag-
ing velocimetry [Gra97; ESWvO06]—to RGB-video-based tech-
niques [EUT19] and implicit neural representations [CLZ*22].

Many recent methods have achieved impressive results in re-
constructing the visual appearance of dynamic phenomena. For in-
stance, Zeng et al. [ZBY*24] proposed an encoder—decoder frame-
work for real-time acquisition and high-quality reconstruction of
temporally varying 3D scenes, while Qiu et al. [QCL*24] com-
bined 3D neural transportation fields with 2D CNN-based detail
refinement to efficiently reconstruct smoke from multi-view videos.
Although these approaches excel at producing visually compelling
reconstructions, they give minimal or no emphasis on enforcing the
physical constraints imposed by the Navier—Stokes equations.

In constrast, methods like GlobalTrans [FST21] and
PICT [WTC24] have made significant strides in robust mo-
tion estimation by integrating long-term supervision and enforcing
physical consistency. GlobalTrans achieves this through differ-
entiable rendering combined with physics, albeit at the cost of
requiring known geometry and lighting conditions, whereas PICT
employs a long-term trajectory representation that, while effective,
is less adept at modeling turbulence.

In forward fluid simulations, various strategies have been devel-
oped to accurately solve the Navier-Stokes equations. Flow map
methods [TP11; QZG*19; NWRC22; DYZ*23] maintain the spa-
tiotemporal trajectories of fluid particles, delivering long-term con-
sistency with reduced numerical vorticity dissipation. Vortex meth-
ods [Cot00] preserve vortex energy by solving the vorticity for-
mulation, ensuring accurate representation of rotational dynamics.
Additionally, frequency-decomposed methods [KTJGO08] enhance
turbulent synthesis by simulating low-frequency components at
coarse resolutions and subsequently integrating high-frequency de-
tails through numerical procedures, thereby compensating for trun-
cation errors. Drawing inspiration from these forward simulation
techniques, we integrate these principles to achieve high-fidelity
velocity estimation in a reconstruction pipeline.

3 Preliminaries

Neural Representations.  Taking multi-view images as inputs,
NeRF [MST#*20] trains a network ¥ (x) = (¢, o) for scene recon-
struction, where x, ¢, and o denote the spatial position, radiance
color, and radiance density, respectively. According to the volumet-
ric rendering formulation, the color C for each pixel is computed by
sampling n points along the ray cast from the camera as follows:

19i6)

n i—
C=ZTi(1—e""'5")cl~,Ti=672F s 0j =hjsi —hj,
i=1
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Figure 2: Method overview. We utilize two distinct neural networks to reconstruct the velocity field at coarse and fine levels. The coarse-level
network emphasizes long-term physical consistency, while the fine-level network recovers observational details within the physically valid
regions defined by the coarse level. Ultimately, we merge the two into a unified reconstruction that preserves both physical correctness and

detailed turbulent motion.

with h; being the camera distance of the i-th sampled point. To
address the high computational cost of NeRF, iNGP [MESK22]
introduces a multi-resolution hash encoding that maps spatial co-
ordinates x to a compact feature vector y. This encoding involves
hashing the input coordinates and querying feature grids at mul-
tiple resolutions, where the range of these resolutions determines
the level of detail the reconstruction can capture. A higher range
encourages the model to reconstruct finer, high-frequency details,
while a lower range focuses more on coarse, low-frequency struc-
tures. Subsequently, a lightweight network m(y) predicts the ra-
diance color ¢ and density o, enhancing computational efficiency
without sacrificing reconstruction quality.

Extracting surfaces from NeRF is challenging due to the lack of
sufficient surface constraints in its representation. To address this,
NeuS [WLL*21] introduces a novel volume rendering method to
train a neural signed distance function (SDF) representation, which
excels at reconstructing high-quality static boundary surfaces.

Chu et al. [CLZ*22] proposed the SIREN+T model to improve
NeRF’s ability on velocity field representation. This model learns
F(x,t) = (u) for velocity reconstruction, where x, f, and u de-
note the spatial position, time, and flow velocity, respectively.
SIREN+T uses the MLPs with periodic activation functions pro-
posed in SIREN [SMB*20] instead of ReLU-based MLPs with po-
sitional encoding strategies. This design enhances the modeling of
continuous derivatives, making it well-suited for representing con-
tinuous flow fields.

© 2025 Eurographics - The European Association
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Physics Constraints  The flow we aim to reconstruct is governed
by the Navier—Stokes equations (NSEs):

—+u-Vu= —ivavzu +f and V-u=0,
ot Py
where u, t, p £ D5 Vs f represent the flow velocity, time, flow den-
sity, pressure, viscosity coefficient, and external force, respectively.
We assume inviscid flow without external forces, following previ-
ous methods [CLZ*22; WTC24; YZG*24]. The concentration den-
sity p satisfies the transport equation:

% +u-Vp=0. €))
According to Beer—Lambert law, the concentration density p is pro-
portional to the radiance density o. This relationship allows us to
leverage the sparse-view videos to supervise the training of the ve-
locity field.

4 Method

Given the intricate complexity and variability of flow motion, we
hierarchically decompose the velocity field into two components: a
coarse-level component u€ characterizing the overall flow patterns,
and a fine-level component uf capturing turbulent details [Fri95;
Pop00]. As shown in Fig. 2, we employ two separate neural net-
works to reconstruct them independently, each with a distinct em-
phasis on physical properties: the coarse-level reconstruction pri-
oritizes long-term physical consistency (§4.1), while the fine-level
reconstruction focuses on recovering observational details (§4.2).
Finally, we combine both components to obtain our final veloc-
ity reconstruction uf!! This hierarchical approach effectively inte-
grates strict physical constraints with detailed flow reconstruction.
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To supervise the velocity reconstruction, we leverage a density
representation inferred from videos via the Navier—Stokes equa-
tions, following Wang et al. [WTC24]. Specifically, we employ a
SIREN+T model for dynamic density and a NeuS model for static
boundary reconstruction.

4.1 Coarse-Level Reconstruction

The coarse-level reconstruction aims to establish the fundamental
physical fidelity of the flow. Our coarse-level velocity field u€ is
represented by a SIREN+T model [CLZ*22] to better capture the
continuous structure of the flow. We introduce novel supervision:
a long-term transport loss optimizing both velocity and density en-
forcing their consistency over time, A velocity—vorticity formula-
tion loss that ensures accurately compliance with the NSEs while
improving convergence stability, a kinetic energy loss suppressing
velocity in unsupervised regions, and a boundary loss ensuring ve-
locity constraints at obstacle boundaries for realistic interactions.

Long-Term Transport Loss  Most of the previous meth-
ods [CLZ*22; YZG*24] employ PDE-based constraints according
to Eq. (1) for velocity field learning, which often suffers from local-
ized constraint enforcement while neglecting long-term error accu-
mulation. Wang et al. [WTC24] proposed a long-term supervision
framework, however, its velocity is represented by first-order differ-
entiation of neural networks, resulting in significant computational
overhead. Inspired by flow map methodologies [DYZ*23], we pro-
pose a novel long-term constraint scheme that eliminates differenti-
ation requirements while maintaining neural network compatibility.

Given both the neural network-predicted density field p; at time
t and subsequent velocity fields ug,---,uf , | over k time steps,
we can derive the density field g, at time 7+ k through recursive
advection according to Eq. (1):

Pr+k =~7{(~7{(~7{(Ptsu§),uf+l)"',u§+k_1), 2)

where A(p,u®) denotes a second-order transport scheme for den-
sity field p via velocity field u®.

As a result, the complete long-term transport loss Lirans can be
formulated as a temporally weighted summation:

B prai = praill3, 3)

k
Lirans =

i=1

where S € (0,1] serves as a discount factor regulating error propa-
gation across time steps.

Velocity-Vorticity Formulation Loss Previous methods
[CLZ*22; YZG*24; WTC24] optimize velocity fields using
simplified Navier—Stokes equations, incorporating velocity loss
Le1 and divergence loss Ly as follows:

C 2

ou
— +ut-vu®

o1 and Loy =[Vuly @

Ly = ‘

However, these methods neglect the pressure projection term in
velocity loss Ly, causing conflicting optimization directions be-
tween velocity loss Ly and divergence loss Lg;y. To address this,
we introduce a vorticity loss Lyor as a replacement for velocity loss

Le1, based on the velocity—vorticity formulation of the Navier—
Stokes equations:

2

ow®
; +u-Vof -0 Vu’

3 ; ®

Lyor = ”

2

where vorticity ¢ = V x u®.

By enforcing vorticity loss Lyor, our method strictly adheres to
the Navier—Stokes constraints while avoiding conflicts with diver-
gence loss Ly, leading to improved convergence stability.

Kinetic Energy Loss  Existing methods [CLZ*22; YZG*24;
WTC24] overlook velocity reconstruction in regions where the
smoke density is zero. Physically, velocities should remain nonzero
near the smoke and decay to zero farther away. However, current
approaches either ignore this issue or simply apply a mask to the
reconstructed velocity based on whether the smoke density is zero,
leading to physically inaccurate results. To address this, we intro-
duce an kinetic energy loss Lyine to obtain the minimum kinetic
energy solution while satisfying other constraints:

Liine = Z”uC”% (6)

This naturally enforces a suitable mask on the velocity.

Boundary Loss We enforce the no-slip boundary condition on
the reconstructed velocity using the immersed boundary method.
To achieve this, we introduce a boundary loss Ly,4 to penalize ve-
locities inside or on the boundary:

Lona= el ™

1S (x)11<0

where S(x) is the SDF reconstructed by NeuS. S(x) < 0 indicates
that position x lies inside or on the boundary.

All the aforementioned loss terms are computed via auto-
differentiation [PGC*17]. The overall loss function for coarse-level
reconstruction is formulated as:

coarse = Ltrans + Avor Lvor + Adiv Ldiv *+ Akine Lkine + Abnd Lbnd>

where all the As are loss weights.

4.2 Fine-Level Reconstruction

Fine-level reconstruction focuses on capturing the intricate details
of the velocity field from the reconstructed density. This is crucial
for preserving turbulence characteristics, which are often essential
for accurate velocity estimation and downstream applications. To
achieve this, we designed an iNGP network to represent the fine-
level velocity field uf, with encoding resolutions set to a higher
range, encouraging the network to capture high-frequency details.

Since we focus on local details now, we train the fine-level ve-
locity field uf using a short-term PDE-based advection loss Lagy:

2
Lagy = . ®)
2

‘%+(u°+uf)-Vp

Enforcing the full physics at the fine-level, as we do at the coarse-
level, is not effective due to the lack of accurate detailed informa-
tion at this scale. Direct physical constraints would be impractical

© 2025 Eurographics - The European Association
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and may disrupt the turbulent flow dynamics. Therefore, we use the
coarse-level reconstructed velocity field #€ to introduce the warp
loss Lwarp and projection loss Ly, as simplified constraints based
on the Navier—Stokes equations:

2

and )

2

Loproj = Huf—u;”z (10)

where the warp loss Lyarp promotes consistent flow reconstruction
across different spatial scales, inspired by Kim et al. [KTJGOS],
while the projection loss Lyoj serves as a weak constraint enforc-
b
denotes the pressure-projected velocity field of uf, computed using
the pressure projection solver described by Yu et al. [YZG*24].

ing the fine-level velocity field uf to be divergence-free. Here, u

As a result, the overall loss function for fine-level reconstruction
is formulated as:

Line = Lagv + /lwarp ~£Warp + /lproj Lproj B

where the A terms serve as weighting coefficients.

4.3 Velocity Field Combination

Finally, we obtain the full velocity field ufoll by combining the
coarse-level velocity field u© and the fine-level velocity field uf.
The coarse level captures the global low-frequency structure, while
the fine level represents high-frequency details. Their combination
yields a representation covering the complete range of flow fea-
tures.

Formally, the full velocity field gfol g computed as

u™=yCrau’, with @=min{(JJu|l,/m)>, 1}, A1)
where m denotes twice the average norm of the coarse-level veloc-
ity field u€ at each time step.

The scale factor « is introduced because the fine-level velocity
field uf is not explicitly constrained by the kinetic energy loss Line
and the boundary loss Lypyg, it may produce artifacts in bound-
ary regions or in regions with zero density. Rather than imposing
the same losses—which would increase the complexity of train-
ing—we leverage the already-trained coarse velocity field u€ as a
mask, achieving a similar regularizing effect in a simpler manner.

5 Experiments

We evaluate our method against state-of-the-art neural ve-
locity reconstruction approaches, including PINF [CLZ*22],
PICT [WTC24], and HyFluid [YZG*24]. To ensure a comprehen-
sive comparison, we conduct experiments on three datasets: two
synthetic and one real-captured. The first is the Cylinder scene pro-
posed by Wang et al. [WTC24], a hybrid synthetic dataset that in-
cludes obstacles. The second is ScalarSyn, a fully synthetic dataset
derived from ScalarFlow [EUT19]. The third is the real captured
ScalarFlow dataset [EUT19]. It is important to note that HyFluid
supports only scenes without obstacles and is therefore excluded
from the evaluation on the Cylinder dataset.

© 2025 Eurographics - The European Association
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For evaluation, we begin with an analysis of the reconstructed
velocity fields through both qualitative visualizations and quan-
titative metrics (§5.1). To further assess the effectiveness of our
method, we apply the reconstructed velocity to a series of down-
stream tasks, including tracer visualization (§5.2) and re-simulation
(85.3). Finally, ablation studies are presented in §5.4. Additional
results, as well as implementation details, are provided in the sup-
plementary material for completeness.

Across these evaluations, our method achieves superior perfor-
mance compared to all baselines, both qualitatively and quantita-
tively. We attribute this advantage to our hybrid framework de-
sign, in which the coarse-phase stage produces clear boundaries
and plausible large-scale structures, while the fine-phase stage cap-
tures high-frequency details. By combining these components, our
framework reconstructs velocity fields more accurately, leading to
improved results in downstream tasks such as tracer visualization
and re-simulation.

5.1 Velocity field Analysis

To evaluate the effectiveness of our reconstructed velocity field, we
conduct both qualitative and quantitative analyses.

For the qualitative evaluation, we first visualize the velocity field

Ground Truth

Figure 3: Velocity visualization on the Cylinder scene. The results
show that our method reconstructs a velocity field closer to the
ground truth compared to PINF and PICT.
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Table 1: Quantitative comparisons on Cylinder, ScalarSyn and ScalarFlow. We evaluate the Iy errors of divergence (towards zero), and
the velocity and vorticity fields (against ground truth), restricted to regions where the ground truth density is non-zero. The Cylinder scene
excludes HyFluid since it does not support scenes with obstacles. For the real-captured ScalarFlow dataset, ground truth velocity and
vorticity are not available, so these metrics are not evaluated. Our method consistently achieves results closest to the ground truth across all

scenes.

Model Cylinder ScalarSyn ScalarFlow

divergence|  velocity|  vorticity|  divergence| velocity| vorticity| divergence| velocity]  vorticity]
PINF 0.0005040 0.1244 0.004989 0.004024 0.1465 0.01302 0.003482 - -
PICT 0.0004526 0.1146 0.004811 0.002380 0.1166 0.01250 0.002177 - -
HyFluid - - - 0.3268 0.4033 0.07176 0.003058 - -
Ours 0.0001801 0.1103 0.004571 0.002241 0.05896 0.01189 0.0004503 - -

using the middle slices of the front, side, and top views, following
the approach of previous methods [CLZ*22; WTC24]. As shown in
Fig. 3 and Fig. 4, it is evident that our method reconstructs the over-
all structure and finer details of the flow more accurately than the
others. Notably, our method shows a clear advantage in reconstruct-
ing the background regions, where other methods often produce
spurious non-zero noise. This improvement is largely attributed to
the incorporation of the kinetic energy loss Lyine and boundary loss
Lpng in our framework.

While the qualitative results highlight the superior background
reconstruction of our method, we note that this is not the sole
source of improvement. To ensure a fairer evaluation, our quantita-
tive analysis focuses only on regions where the ground truth density
is non-zero, excluding the background. As shown in Table 1, our
method still achieves lower errors in velocity and vorticity, as well

Ours

Ground Truth

Figure 4: The velocity visualization on the ScalarSyn scene. The
results demonstrate that the velocity field reconstructed by our
method is closer to the overall structure of the ground truth, while
also preserving the corresponding turbulent details.

as reduced divergence, demonstrating superior physical accuracy
across the entire flow domain.

5.2 Tracer Visualization

In this task, we simulate the motion of virtual paper pieces gently
laid across a plane near the inflow region. These imaginary trac-
ers are advected by the reconstructed velocity field to visualize the
flow dynamics. Both the reconstructed smoke and the paper pieces
are rendered in Blender [Ble]. As illustrated in Fig. 8, Hyfluid pro-
duces non-physical results, causing the paper to move chaotically
in an unrealistic manner. PINF and PICT, on the other hand, also
push paper pieces that are supposed to remain stationary, which
introduces deviations from the expected behavior. In contrast, our
method yields motion that closely aligns with the ground truth.

5.3 Re-Simulation

We conducted the re-simulation task following Yu et al. [YZG*24].
Specifically, we take the first-frame density from the reconstruc-
tion and advect it using the reconstructed velocity field until the
final frame. The advection is implemented using the MacCormack
method [SFK*08]. As shown in Fig. 5, Fig. 6, and Fig. 7, our re-
simulated smoke exhibits finer details and better alignment with
the ground truth, indicating a more accurate velocity field recon-
struction than all baseline methods. Quantitatively, our method also
achieves the highest peak signal-noise ratio (PSNR) score, further
validating its superior performance.

5.4 Abalation Study

Since our main contributions lie in the hybrid framework that com-
bines coarse-level and fine-level representations, as well as the in-
troduction of the vorticity loss Lyer, transport loss Lirans, Kinetic
loss Lyine and boundary loss L},q, we conduct an ablation study
to evaluate the effectiveness of these components.

As shown in Table 2, both vorticity loss Lyor and transport loss
Lirans help produce reconstructions that are closer to the ground
truth. Furthermore, since vorticity loss Lyor does not conflict with
the divergence loss Ly;y, it also leads to more stable convergence,
as demonstrated in Fig. 12.

As illustrated in Fig. 9, we reconstruct the velocity field on the

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 5: Visualization of re-simulation results on the Cylinder scene. Compared to PINF and PICT, our method achieves finer details and
better alignment with the ground truth.

PINF PICT Hyfluid Ours
PSNR 30.06 PSNR 31.00 PSNR 32.41 PSNR 32.91

e -

23 /

Ground Truth

Figure 6: Visualization of re-simulation results on the ScalarSyn scene. Our method better reproduces the fine high-frequency structures of
smoke compared to PINF and PICT, while also avoiding the introduction of unphysical noise compared to HyFluid.

PINF PICT Hyfluid Ours Ground Truth

PSNR 31.24 PSNR 31.97 PSNR 32.62 PSNR 33.28

Figure 7: Visualization of re-simulation results on the ScalarFlow dataset. Our method more effectively prevents smoke streaking compared
to PINF and PICT, as it better captures turbulent details by accurately modeling both coarse-level and fine-level velocity. Compared to
HyFluid, our method captures high-frequency information with greater physical accuracy, allowing us to faithfully reproduce the smoke
details of the ground truth, as shown in the red box.

Cylinder scene without the kinetic loss Ly;ne and the boundary loss
Lpnd, respectively. It is clear that the kinetic loss Lyine contributes
to a better reconstruction by encouraging the background veloc-
ity to approach zero. In contrast, the boundary loss Ly,,q enforces
velocities at the boundaries to zero, ensuring that the boundary con-
ditions are satisfied.

To assess the impact of fine-level reconstruction, we visualize
the reconstructed velocity fields and vorticity fields using volume
rendering under different scenes, as shown in Fig. 10 and Fig. 11.
The results demonstrate that our fine-level reconstruction adap-

© 2025 Eurographics - The European Association
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tively adds high-frequency details based on the scene character-
istics. In smooth cases like Cylinder, where the coarse-level out-
put is already accurate, it avoids introducing unnecessary noise. In
contrast, for turbulent scenes such as ScalarFlow, it supplements
missing fine-scale structures that the coarse level fails to capture.
As shown in Fig. 13, these added details lead to re-simulations that
more closely match the ground truth, confirming their physical rel-
evance.
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Hyfluid

Ground Truth

Figure 8: Tracer visualization results on ScalarSyn. As shown in the visualization, all baseline methods—PINF, PICT, and
HyFluid—incorrectly lift the paper pieces that should remain stationary. Moreover, HyFluid produces chaotic velocity fields that are physi-
cally implausible. In contrast, our method accurately reconstructs the motion, closely matching the ground truth.

Ground Truth

Figure 9: Ablation study of the kinetic loss Ly, and boundary loss
Lpna on the Cylinder scene. The kinetic loss Ly, promotes a clean
reconstruction of the background velocity, while the boundary loss
Lpna enforces velocities at the boundaries to zero, ensuring that
the boundary conditions are satisfied.

Coarse-level Velocity Full Velocity

Coarse-level Vorticity

(. /

Full Vorticity

Figure 10: Volume rendering results of the reconstructed veloc-
ity and vorticity fields on Cylinder. Due to the relatively smooth
nature of the flow in this scene, the coarse-level reconstruction al-
ready captures the essential structures of the velocity and vorticity
fields. As a result, the fine-level reconstruction introduces minimal
changes, demonstrating that our method adaptively adds fine-scale
turbulent details only when necessary.

6 Conclusion and Discussion

We have presented a novel framework for fluid reconstruction from
sparse video inputs that addresses the inherent challenges of accu-
rately capturing turbulent velocity fields while maintaining long-
term physical consistency. Our approach introduces a strategic
split in supervision across spatial scales, with fine-scale observa-
tion fidelity focused on turbulence details and coarse-scale con-
sistency enforcing long-term physical behavior. In this way, our
method achieves high-fidelity reconstructions that accurately rep-
resent large-scale flow dynamics and fine-scale turbulence.

Nonetheless, accurately recovering the true velocity fields from
sparse video inputs remains a challenging task. We believe the pri-
mary reason for the discrepancy between the reconstructed velocity

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 11: Volume rendering results of the reconstructed velocity
and vorticity fields on ScalarFlow. The four columns show, respec-
tively, the coarse-level velocity field, coarse-level vorticity field, full
velocity field and full vorticity field. These results suggest that the
fine-level reconstruction enhances turbulent features while main-
taining the global structure obtained at the coarse level.

Model Temporal Supervision Physics Constraints

short-u using advection loss L,qv
short-w  using advection loss L,gy
long-u using transport 10ss Lirans
long-w using transport 108S Lirans

using velocity loss Ly
using vorticity loss Lyor
using velocity loss Ly
using vorticity loss Lyor

I errorson  divergence|  velocity|  vorticity|
short-u 0.0003946 0.1182 0.004697
short-w 0.0002934 0.1131 0.004656
long-u 0.0002186 0.1105 0.004586
long-w 0.0001801 0.1103 0.004571

Table 2: The ablation study on the Cylinder scene. The long-w
model is our full method, while others are ablated versions, high-
lighting that better convergence is achieved by the long temporal
loss Lirans and the vorticity-based physical constraints Lyor.

field and the ground truth stems from the inaccuracy in the recon-
structed density field. Since the density field is evaluated through
volume rendering from sparse-view videos, there is significant am-
biguity in the solutions found by the neural network — the ren-
dered results may closely match the input videos, but still devi-
ate substantially from the true density, especially under unknown
lighting conditions. For example, PINF and PICT tend to produce
overly smooth reconstructions, while Hyfluid results are often quite
chaotic. Although our hybrid framework incorporates more accu-
rate physical constraints during training, this issue remains only
partially resolved. Addressing these reconstruction gaps is an im-
portant direction for future work, aiming to further improve the fi-
delity of inferred velocity fields.

Building on these challenges, our method also encounters cer-
tain inherent limitations. A potential direction for future work is
to incorporate these factors to enhance the realism and accuracy
of the simulation. Additionally, our method focuses solely on gas
and does not account for liquids. Since liquids feature free surfaces,
they may require additional physical modeling and constraints. Fi-
nally, like other NeRF-based neural representations, our optimiza-
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Figure 12: Convergence curves of the divergence loss Ly using
different loss combinations in the Cylinder scene. It is clear that the
velocity-vorticity formulation loss Ly is more effective in aiding
the convergence of the divergence Lgiy than the velocity loss L.

Ground Truth

Coarse-level Full
PSNR 32.69 PSNR 33.28

Figure 13: The ablation study on the ScalarFlow dataset. We vi-
sualize the re-simulation results using both coarse-level and full
velocity. It is clear that incorporating fine-level velocity helps cap-
ture the high-frequency components more effectively.

tion process is relatively slow. On an NVIDIA 4090D GPU, our
current implementation requires about 12 hours for high-fidelity
smoke reconstruction. A promising direction for future work is to
integrate our framework with faster reconstruction methods, such
as 3DGS [KKLD23], to improve efficiency.
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